
Linear Algebra & Geometry
LECTURE 9

• Dimension of a vector space

• Matrices



Theorem (Replacement Lemma, Steinitz Lemma)

Suppose in some vector space 𝑉 over 𝕂 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛} is 
linearly independent and 𝑅 = {𝑤1, 𝑤2, … , 𝑤𝑘} spans 𝑉, i.e., 
𝑠𝑝𝑎𝑛 𝑅 = 𝑉. Then

1. 𝑛 ≤ 𝑘

2. There exist 𝑖1, 𝑖2, … , 𝑖𝑛 ∈ {1,2,… , 𝑘} such that 𝑖1 < 𝑖2 <
⋯ < 𝑖𝑛 and 𝑅 ∖ 𝑤𝑖1 , 𝑤𝑖2 , … ,𝑤𝑖𝑛 ∪ 𝑆 spans 𝑉.

Proof.
Since part 1. is an obvious consequence of part 2., we only need 
to prove part 2. This is done by induction on 𝑛. 



Proof (of 2., induction on 𝑛)
The base case, 𝑛 = 1. 
𝑆 = {𝑣1} is linearly independent iff 𝑣1 ≠ Θ (from 𝑎𝑣 = Θ ⇒ 𝑎 =
0 ∨ 𝑣 = Θ). We must show that one vector from 𝑅 can be 
replaced by 𝑣1 preserving the spanning property (that's why the 
thing is called the replacement lemma). Since 𝑅 spans 𝑉, 
𝑣1 = 𝑎1𝑤1 + 𝑎2𝑤2 +⋯+ 𝑎𝑘𝑤𝑘 for some 𝑎1, 𝑎2, … , 𝑎𝑘 ∈ 𝕂. 
Since 𝑣1 ≠ Θ, at least one coefficient is different from 0. Without 
loss of generality, we can say 𝑎1 ≠ 0. This implies that 
𝑤1 = (𝑎1)

−1𝑣1 + −𝑎2𝑎1
−1 𝑤2 +⋯+ −𝑎𝑘𝑎1

−1 𝑤𝑘 i.e. 𝑤1 ∈
𝑠𝑝𝑎𝑛{𝑣1, 𝑤2, …𝑤𝑘} so, 𝑉 ⊇ 𝑠𝑝𝑎𝑛 𝑅 ∖ 𝑤1 ∪ 𝑣1 =
𝑠𝑝𝑎𝑛 𝑣1, 𝑤2, …𝑤𝑘 = 𝑠𝑝𝑎𝑛 𝑣1, 𝑤1, 𝑤2, …𝑤𝑘 ⊇

𝑠𝑝𝑎𝑛 𝑤1, 𝑤2, …𝑤𝑘 = 𝑉 hence, 𝑉 = 𝑠𝑝𝑎𝑛 𝑅 ∖ 𝑤1 ∪ 𝑣1 .

QED



The induction step.

Suppose {𝑣1, 𝑣2, … , 𝑣𝑛+1} is linearly independent, {𝑤1, 𝑤2, … ,
𝑤𝑘} spans 𝑉, and the lemma is true for every 𝑛-element linearly 

independent set, in particular for {𝑣1, 𝑣2, … , 𝑣𝑛}. 
Hence, 𝑘 ≥ 𝑛 and some 𝑛 vectors from the spanning set {𝑤1, 𝑤2,
… , 𝑤𝑘} can be replaced by 𝑣1, 𝑣2, … , 𝑣𝑛. Without losing generality,

we may assume that the replaceable vectors are 𝑤1, 𝑤2, … ,𝑤𝑛. So, 

𝑣𝑛+1 = 𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑛𝑣𝑛 + 𝑎𝑛+1𝑤𝑛+1 +⋯𝑎𝑘𝑤𝑘.

Since 𝑣𝑛+1 is NOT a linear combination of 𝑣1, 𝑣2, … , 𝑣𝑛, at least 

one of 𝑎𝑛+1, … , 𝑎𝑘, say 𝑎𝑡, is nonzero hence, as in the first part, 𝑤𝑡

can be replaced by 𝑣𝑛+1. QED



Corollary.

If 𝐴 and 𝐵 are bases of a vector space 𝑉 over 𝕂 then 𝐴 = |𝐵|.

Proof.

Since 𝐴 spans 𝑉 and 𝐵 is linearly independent, 𝐴 ≥ |𝐵|. 
Since 𝐵 spans 𝑉 and 𝐴 is linearly independent, 𝐵 ≥ 𝐴 . QED

In other words, in a finite-dimensional vector space every two
bases have the same size. Hence, the following definition makes 
sense:

Definition.

The dimension of a (finite-dimensional) vector space 𝑉 is the 
number of vectors in any of its bases.

We denote the dimension of 𝑉 by dim(𝑉).



Examples.

1. For every 𝕂𝑛, dim 𝕂𝑛 = 𝑛.

2. dim(ℝ𝑛[𝑥]) = 𝑛 + 1.

3. dim(ℝ 𝑥 ) is infinite.

4. dim ℂ = 2 (over ℝ).

5. dim ℂ = 1 (over ℂ).

6. dim 2 𝑎1,𝑎2,…,𝑎𝑛 = 𝑛 over ℤ2.



Theorem. (6-pack theorem)

Suppose 𝑉 is a vector space, dim(𝑉) = 𝑛, 𝑛 > 0 and 𝑆 ⊆ 𝑉. 
Then 

1. If |𝑆| = 𝑛 and 𝑆 is linearly independent, then 𝑆 is a basis for 𝑉
2. If |𝑆| = 𝑛 and 𝑠𝑝𝑎𝑛(𝑆) = 𝑉 then S is a basis for V

3. If 𝑆 is linearly independent, then 𝑆 is a subset of a basis of 𝑉
4. If 𝑠𝑝𝑎𝑛(𝑆) = 𝑉 then 𝑆 contains a basis of 𝑉
5. 𝑆 is a basis of 𝑉 iff 𝑆 is a maximal linearly independent subset                                 

of 𝑉
6. 𝑆 is a basis of 𝑉 iff 𝑆 is a minimal spanning set for 𝑉.



Proof (Some parts are left as an exercise).

1. Obvious consequence of Steinitz Lemma. (Take any basis and 
replace ALL its vectors with vectors from 𝑆).

2. If 𝑆 is not a basis, it is linearly dependent hence, a vector from 
𝑆, say 𝑤 is a linear combination of vectors from 𝑆 ∖ {𝑤}. But 
then 𝑠𝑝𝑎𝑛 𝑆 = 𝑠𝑝𝑎𝑛 𝑆 ∖ 𝑤 = 𝑉, which means 𝑆 ∖ {𝑤} is 
a spanning set of fewer vectors than some linearly 
independent set (any basis), contrary to Steinitz Lemma.

4. Easy if 𝑆 is finite (you remove, one by one, vectors who are 
linear combinations of other vectors from 𝑆 until you get 
𝑛 vectors and then you use 2.). In case 𝑆 is infinite you can't 
apply Steinitz Lemma directly. Your job is to show that in a 
finite-dimensional vector space every infinite spanning set 
contains a finite spanning subset.



MATRICES

Definition.

An 𝑚𝑛 matrix over a field 𝔽 is a function

𝐴: 1,2,… ,𝑚 × 1,2,… , 𝑛 → 𝔽.

A matrix is usually represented by (and identified with) an 𝑚𝑛
(“𝑚 by 𝑛”) array of elements of the field (usually numbers). The 
horizontal lines of the array are referred to as rows and the 
vertical ones as columns of the matrix. The individual elements 
are called entries of the matrix. 

Thus, an 𝑚𝑛 matrix has 𝑚 rows, 𝑛 columns and 𝑚𝑛 entries. 

If 𝑚 = 𝑛 we call 𝐴 a square matrix.



Matrices will be denoted by capital letters and their entries by the 
corresponding small letters. Thus, in case of a matrix 𝐴 we will 
write 𝐴(𝑖, 𝑗) = 𝑎𝑖,𝑗 and will refer to 𝑎𝑖,𝑗 as the element of the 𝑖-th
row and 𝑗-th column of 𝐴. 

On the other hand, we will use the symbol [𝑎𝑖,𝑗] to denote the 

matrix A with entries 𝑎𝑖,𝑗. 
Rows and columns of a matrix can (and will) be considered 
vectors from 𝔽𝑛 and 𝔽𝑚, respectively, and will be denoted by 
𝑟1, 𝑟2, … , 𝑟𝑚 and 𝑐1, 𝑐2, … , 𝑐𝑛. The expression 𝑚𝑛 is called the 
size of the matrix.

𝐴 =

𝑎1,1 𝑎1,2 … 𝑎1,𝑛
𝑎2,1 𝑎2,2 … 𝑎2,𝑛
⋮ ⋮ … ⋮

𝑎𝑚,1 𝑎𝑚,2 … 𝑎𝑚,𝑛



Algebra of matrices

Definition.

We add and scale matrices as we do functions.

Matrix addition is only defined for matrices of matching sizes, 

𝐴 + 𝐵 𝑖, 𝑗 = 𝐴 𝑖, 𝑗 + 𝐵 𝑖, 𝑗 for every 𝑖, 𝑗, 1 𝑖 𝑚, 1 𝑗 𝑛
(addition of functions).

(𝑐𝐴)(𝑖, 𝑗) = 𝑐𝐴(𝑖, 𝑗), 1 𝑖 𝑚, 1 𝑗 𝑛 (multiplication of a 
function by a constant)



Fact.

The set of all 𝑚𝑛 matrices over a field 𝔽 (𝔽 𝑚 [𝑛]) with these 
operations is a vector space over 𝔽. Its dimension is 𝑚𝑛.

(Note: 𝑘 = {1,2,… , 𝑘})

Proof. 𝔽 𝑚 ×[𝑛] is a vectors space because the set of functions 
from any set into a field with component-wise operations is a 
vector space. Matrices 𝐴𝑝,𝑞 where

𝐴𝑝,𝑞(𝑖, 𝑗) = ቊ
1 for 𝑖 = 𝑝, 𝑗 = 𝑞
0 otherwise

form a basis of 𝔽 𝑚 ×[𝑛]

One can easily notice that 𝔽𝑚𝑛 is isomorphic to 𝔽𝑚𝑛 and these 
matrices correspond to unit vectors of 𝔽𝑚𝑛. QED



Matrix multiplication is NOT defined as multiplication of 
functions! 

Definition.

Let 𝐴 be an 𝑚𝑛 and 𝐵 a pq matrix. If 𝑛 = 𝑝
(𝐴𝐵)(𝑖, 𝑗) = σ𝑠=1

𝑛 𝐴(i,s)𝐵(s,j), for every 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ j ≤ 𝑞. 

Otherwise 𝐴𝐵 is not defined.

𝐴𝐵 is clearly an mq matrix.

Matrix multiplication is non-commutative, it may even happen that 
𝐴𝐵 exists while 𝐵𝐴 does not. 



Example (Matrix multiplication).

1. Let 𝐴 =
1 −1 2
2 0 −3

, 𝐵 =
2 0 2
−1 3 1
1 −2 2

. Then, 

𝐴𝐵 =
2 + 1 + 2 0 − 3 − 4 2 − 1 + 4
4 + 0 − 3 0 + 0 + 6 4 + 0 − 6

=
5 −7 5
1 6 −2

.

2. Let 𝐴 =
1 0
1 0

, 𝐵 =
0 0
1 1

. Then 

𝐴𝐵 =
0 0
0 0

and 𝐵𝐴 =
0 0
2 0

. 

The second example proves that 𝐴𝐵 may differ from 𝐵𝐴 even 
when both products exist and have the same size.



Example (Matrix multiplication).

𝐴
1 2 −2
2 1 3

2 −1
2 2
0 3

𝐵

𝐵
2 −1
2 2
0 3

1 2 −2
2 1 3

𝐴

𝐴
1 2 −2
2 1 3

𝑋
𝑥
𝑦
𝑧

2 4
0


