Linear Algebra & Geometry LECTURE 9

- Dimension of a vector space
- Matrices

Theorem (Replacement Lemma, Steinitz Lemma)

Suppose in some vector space V over \mathbb{K} $S = \{v_1, v_2, ..., v_n\}$ is linearly independent and $R = \{w_1, w_2, ..., w_k\}$ spans V, i.e., span(R) = V. Then

1. $n \leq k$

2. There exist
$$i_1, i_2, ..., i_n \in \{1, 2, ..., k\}$$
 such that $i_1 < i_2 < ... < i_n$ and $(R \setminus \{w_{i_1}, w_{i_2}, ..., w_{i_n}\}) \cup S$ spans *V*.

Proof.

Since part 1. is an obvious consequence of part 2., we only need to prove part 2. This is done by induction on n.

Proof (of 2., induction on *n*) The base case, n = 1. $S = \{v_1\}$ is linearly independent iff $v_1 \neq \Theta$ (from $av = \Theta \Rightarrow a =$ $0 \lor v = \Theta$). We must show that one vector from R can be replaced by v_1 preserving the spanning property (that's why the thing is called *the replacement lemma*). Since R spans V, $v_1 = a_1 w_1 + a_2 w_2 + \dots + a_k w_k$ for some $a_1, a_2, \dots, a_k \in \mathbb{K}$. Since $v_1 \neq \Theta$, at least one coefficient is different from 0. Without loss of generality, we can say $a_1 \neq 0$. This implies that $w_1 = (a_1)^{-1}v_1 + (-a_2a_1^{-1})w_2 + \dots + (-a_ka_1^{-1})w_k$ i.e. $w_1 \in a_1$ $span\{v_1, w_2, \dots, w_k\}$ so, $V \supseteq span((R \setminus \{w_1\}) \cup \{v_1\}) =$ $span\{v_1, w_2, ..., w_k\} = span\{v_1, w_1, w_2, ..., w_k\} \supseteq$ $span\{w_1, w_2, ..., w_k\} = V$ hence, $V = span((R \setminus \{w_1\}) \cup \{v_1\}).$ QED

The *induction step*.

Suppose $\{v_1, v_2, \dots, v_{n+1}\}$ is linearly independent, $\{w_1, w_2, \dots, v_{n+1}\}$ w_k spans V, and the lemma is true for every *n*-element linearly independent set, in particular for $\{v_1, v_2, \dots, v_n\}$, w_k can be replaced by $v_1, v_2, ..., v_n$. Without losing generality, we may assume that the replaceable vectors are w_1, w_2, \dots, w_n . So, $v_{n+1} = a_1v_1 + a_2v_2 + \dots + a_nv_n + a_{n+1}w_{n+1} + \dots + a_kw_k.$ Since v_{n+1} is NOT a linear combination of $v_1, v_2, ..., v_n$, at least one of a_{n+1}, \ldots, a_k , say a_t , is nonzero hence, as in the first part, w_t can be replaced by v_{n+1} . QED

Corollary.

If *A* and *B* are bases of a vector space *V* over \mathbb{K} then |A| = |B|. **Proof.**

Since *A* spans *V* and *B* is linearly independent, $|A| \ge |B|$. Since *B* spans *V* and *A* is linearly independent, $|B| \ge |A|$. QED

In other words, in a finite-dimensional vector space every two bases have the same size. Hence, the following definition makes sense:

Definition.

The *dimension* of a (finite-dimensional) vector space V is the number of vectors in any of its bases.

We denote the dimension of V by dim(V).

Examples.

- 1. For every \mathbb{K}^n , dim $(\mathbb{K}^n) = n$.
- 2. $\dim(\mathbb{R}_{n}[x]) = n + 1.$
- 3. dim($\mathbb{R}[x]$) is infinite.
- 4. dim(\mathbb{C}) = 2 (over \mathbb{R}).
- 5. dim(\mathbb{C}) = 1 (over \mathbb{C}).

6. dim
$$(2^{\{a_1,a_2,...,a_n\}}) = n$$
 over \mathbb{Z}_2 .

Theorem. (6-pack theorem)

Suppose *V* is a vector space, $\dim(V) = n, n > 0$ and $S \subseteq V$. Then

- 1. If |S| = n and S is linearly independent, then S is a basis for V
- 2. If |S| = n and span(S) = V then S is a basis for V
- 3. If S is linearly independent, then S is a subset of a basis of V
- 4. If span(S) = V then S contains a basis of V
- 5. S is a basis of V iff S is a maximal linearly independent subset of V
- 6. S is a basis of V iff S is a minimal spanning set for V.

Proof (Some parts are left as an exercise).

- 1. Obvious consequence of Steinitz Lemma. (Take any basis and replace ALL its vectors with vectors from *S*).
- If S is not a basis, it is linearly dependent hence, a vector from S, say w is a linear combination of vectors from S \ {w}. But then span(S) = span(S \ {w}) = V, which means S \ {w} is a spanning set of fewer vectors than some linearly independent set (any basis), contrary to Steinitz Lemma.
- 4. Easy if *S* is finite (*you remove, one by one, vectors who are linear combinations of other vectors from S until you get n vectors and then you use 2.*). In case *S* is infinite you can't apply Steinitz Lemma directly. Your job is to show that in a finite-dimensional vector space every infinite spanning set contains a finite spanning subset.

MATRICES

Definition.

An $m \times n$ matrix over a field \mathbb{F} is a function $A: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{F}.$

A matrix is usually represented by (and identified with) an $m \times n$ ("*m* by *n*") array of elements of the field (usually numbers). The horizontal lines of the array are referred to as *rows* and the vertical ones as *columns* of the matrix. The individual elements are called *entries* of the matrix.

Thus, an $m \times n$ matrix has *m* rows, *n* columns and *mn* entries. If m = n we call *A* a *square matrix*. Matrices will be denoted by capital letters and their entries by the corresponding small letters. Thus, in case of a matrix A we will write $A(i,j) = a_{i,j}$ and will refer to $a_{i,j}$ as the element of the *i*-th row and *j*-th column of A.

On the other hand, we will use the symbol $[a_{i,j}]$ to denote the matrix A with entries $a_{i,j}$.

Rows and columns of a matrix can (and will) be considered vectors from \mathbb{F}^n and \mathbb{F}^m , respectively, and will be denoted by r_1, r_2, \ldots, r_m and c_1, c_2, \ldots, c_n . The expression $m \times n$ is called the *size* of the matrix.

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix}$$

Algebra of matrices

Definition.

We add and scale matrices as we do functions.

Matrix addition is only defined for matrices of matching sizes,

(A + B)(i, j) = A(i, j) + B(i, j) for every $i, j, 1 \le i \le m, 1 \le j \le n$ (addition of functions).

 $(cA)(i,j) = cA(i,j), 1 \le i \le m, 1 \le j \le n$ (multiplication of a function by a constant)

Fact.

The set of all $m \times n$ matrices over a field $\mathbb{F}(\mathbb{F}^{[m] \times [n]})$ with these operations is a vector space over \mathbb{F} . Its dimension is mn.

(Note:
$$[k] = \{1, 2, ..., k\}$$
)

Proof. $\mathbb{F}^{[m] \times [n]}$ is a vectors space because the set of functions from any set into a field with component-wise operations is a vector space. Matrices $A_{p,q}$ where

$$A_{p,q}(i,j) = \begin{cases} 1 \text{ for } i = p, j = q \\ 0 & \text{otherwise} \end{cases} \text{ form a basis of } \mathbb{F}^{[m] \times [n]}$$

One can easily notice that $\mathbb{F}^{m \times n}$ is isomorphic to \mathbb{F}^{mn} and these matrices correspond to unit vectors of \mathbb{F}^{mn} . QED

Matrix multiplication is NOT defined as multiplication of functions!

Definition.

Let *A* be an $m \times n$ and *B* a $p \times q$ matrix. If n = p $(AB)(i, j) = \sum_{s=1}^{n} A(i, s)B(s, j)$, for every $1 \le i \le m$ and $1 \le j \le q$. Otherwise *AB* is not defined. *AB* is clearly an $m \times q$ matrix.

Matrix multiplication is non-commutative, it may even happen that *AB* exists while *BA* does not.

Example (Matrix multiplication).

1. Let
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 & 2 \\ -1 & 3 & 1 \\ 1 & -2 & 2 \end{bmatrix}$. Then,

$$AB = \begin{bmatrix} 2+1+2 & 0-3-4 & 2-1+4 \\ 4+0-3 & 0+0+6 & 4+0-6 \end{bmatrix} = \begin{bmatrix} 5 & -7 & 5 \\ 1 & 6 & -2 \end{bmatrix}.$$

2. Let
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$. Then
 $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $BA = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix}$.

The second example proves that *AB* may differ from *BA* even when both products exist and have the same size.

Example (Matrix multiplication).

$$A\begin{bmatrix} 2 & -1 \\ 2 & 2 \\ 0 & 3 \end{bmatrix} B \qquad \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 3 \end{bmatrix} A$$
$$B\begin{bmatrix} 2 & -1 \\ 2 & 1 & 3 \end{bmatrix} A$$
$$B\begin{bmatrix} 2 & -1 \\ 2 & 2 \\ 0 & 3 \end{bmatrix}$$

$$X\begin{bmatrix} x\\ y\\ z\end{bmatrix}$$
$$A\begin{bmatrix} 1 & 2 & -2\\ 2 & 1 & 3\end{bmatrix}$$